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On some basic applications of Gröbner Bases

Streszczenie. In this paper, we introduced notions and basic facts on Gröbner
Basis Theory. An application of the theory for solving algebraic equations
is a fundamental result presented in the paper. Methods of elimination of
parameter from a parametric equation for determining a polynomial implicit
form of an equation is the second one result presented in the paper, the
methods are illustrated with curves: the Folium of Descartes, Bézier’s curve
and many surfaces, especially the Enneper surface.

1. Notation and basic facts

We introduce basic notions which will be used throughout this paper. Let
k[x1, . . . , xn] be a polynomial ring over an infinite field k. Denote

Xα := Xα1
1 · · ·Xαn

n .

For f =
∑
α∈Nn

cαX
α ∈ k[x1, . . . , xn] the support of f is

supp f = {α : cα 6= 0}.

and for P ⊂ k[x1, . . . , xn] we put suppP =
⋃
f∈P

supp f . Let T be a set of all

monomials in k[x1, . . . , xn]. An admissible term ordering ≺ is a linear ordering
defined on the set T that satisfies the following conditions:

(i) 1 ≺ t for all t ∈ T ,

(ii) t1 ≺ t2 implies t1 · s ≺ t2 · s for all s, t1, t2 ∈ T .

Under the natural correspondence between terms and exponent tuples, we define
admissible term ordering in Nn in the following way:

α ≺ β if Xα ≺ Xβ .
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Let ≺ be a fixed admissible term ordering in Nn. For a nonzero f ∈ k[x1, . . . , xn]
we define the exponent, the leading monomial, the leading coefficient, the leading
term of f as:

exp≺ f := max
≺
{α : α ∈ supp f},

LM≺ f :=Xexp≺ f ,

LC≺ f :=cexp≺ f ,

LT≺ f := ( LC≺ f)(LM≺ f),

respectively, and for any P ⊂ k[x1, . . . , xn] \ {0} we define the leading monoid and
standard monomials:

L≺(P ) :=


⋃
f∈P

(exp≺ f + Nn) if P * {0}

∅ if P ⊆ {0}
DP :=Nn \ L≺(P ).

Let P ⊂ k[x1, . . . , xn] \ {0}. The (polynomial) ideal generated by P we denote by
〈P 〉.

The fundamental concept of the theory is the definition of a finite set uniquely
defining a polynomial ideal. Let starts with preliminary definitions.

Definition 1
A finite subset G ⊂ k[x1, . . . , xn] is a Gröbner basis with respect to fixed admissible
order ≺ if 0 /∈ G and

L≺(〈G〉) = L≺(G).

Definition 2
A reduced Gröbner basis of a polynomial ideal I is a Gröbner basis G of I such
that:

(i) LC(p) = 1 for all p ∈ G,

(ii) For all p ∈ G, no monomial of p lies in 〈LT(G \ {p})〉.

Definition 3
Let f, g ∈ k[x1, . . . , xn] \ {0}.

(i) If LM(f) = xα and LM(g) = xβ , then let γ = γ1 · · · γn, where γi =
max{αi, βi} for i = 1, . . . , n. We call xγ the least common multiple of LM(f)
and LM(g) and denote xγ = LCM(LM(f),LM(g)).

(ii) The S−polynomial of f and g is the combination

S(f, g) := xγ

LT(f)f −
xγ

LT(g)g.
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The following property of a polynomial ideal is a basic characterization of Gröbner
basis, for a fixed monomial order.

Theorem 4 (Division Algorithm)
Fix an admissible term ordering in Nn and let G = (g1, . . . , gs) be an ordered
s–tuple of polynomials in k[x1, . . . , xn]. Then every f ∈ k[x1, . . . , xn] can be written
as

f = a1g1 + · · ·+ asgs + r,

where ai, r ∈ k[x1 . . . , xn], and either r = 0 or r is a linear combination, with coeffi-
cients in k, of monomials, none of which is divisible by any of LM(f1), . . . ,LM(fs).
We will call r a remainder of f on division by G.

Theorem 5 (Buchberger’s Criterion)
Let I be a polynomial ideal. Then a basis G = {g1, . . . , gs} of I (i.e. I = 〈G〉) is
a Gröbner basis of I iff for all pairs i 6= j, the remainder of division of S(gi, gj)
by G (listed in some monomial order) is zero.

One of the fundamental theorems in computational commutative algebra is Buch-
berger’s algorithm. The algorithm is an effective method for computation a Gröb-
ner basis for a given set of generators of a polynomial ideal. Buchberger’s algorithm,
which is based on Dixon’s lemma, is a generalization of the Euclidean algorithm
and the Gaussian elimination.

Theorem 6 (Buchberger’s Algorithm)
Let f1, . . . , fs ∈ k[x1, . . . , xn]. Then there exists an algorithm for a computation of
a Gröbner basis G of the ideal 〈f1, . . . , fs〉 such that

〈f1, . . . , fs〉 = 〈G〉.

We are interested in an effective algorithmic elimination of variables in poly-
nomial equations. The classical elimination theory, which starts with Bézout’s, is
based on the theory of determinants, especially the resultant. We present the basic
theorem of the modern theory of elimination in the computational commutative
algebra. Let us start with the definition:

Definition 7
For I = 〈f1, . . . , fs〉 ⊂ k[x1, . . . , xn] and a fixed 0 ≤ l ≤ n, the l−th elimination
ideal is the ideal Il in k[x1, . . . , xn] defined by

Il := I ∩ k[xl+1, . . . , xn].

Theorem 8 (The Elimination Theorem)
Let I ⊂ k[x1, . . . , xn] be an ideal and let set G be a Gröbner basis of I with respect
to the lex order. Then, for every 0 ≤ l ≤ n, the set

Gl = G ∩ k[xl+1, . . . , xn]

is a Gröbner basis of the l−th elimination ideal Il.
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A geometric interpretation, in complex affine n−dimensional space, of the elimi-
nation of one variable in a polynomial equation of complex variable gives the
following theorem:

Corollary 9 ([1], Corollary 4, p. 127)
Let I = 〈f1, . . . , fs〉 ⊂ C[x1, . . . , xn] and assume that for some i the polynomial fi
is of the form

fi = cxN1 + terms in which deg x1 < N,

where c ∈ C is nonzero and N > 0. If I1 is the first elimination ideal, then in Cn−1

π1(V ) = V(I1),

where π1 is the canonical projection on the last n− 1 components.

Let us recall that V (I) is the set of common zeros of polynomials from I. An inter-
pretation, in the affine space kn, of the elimination algorithm gives the following
theorem:

Theorem 10 ([1], Theorem 1, p. 130)
Let k be an infinite field and let F : km → kn be a polynomial mapping

x1 = f1(t1, . . . , tm)
...

xn = fn(t1, . . . , tm).
(1)

Let I = 〈x1−f1, . . . , xn−fn〉 ⊂ k[t1, . . . , tm, x1, . . . , xn] and Im = I∩k[x1, . . . , xn]
be them−th elimination ideal. Then V(Im) is the smallest variety in kn containing
F (km).

The previous results may be generalized to the case of rational mappings.

Definition 11
For f1, . . . , fn, g1, . . . , gn ∈ k[t1, . . . , tm] a rational parametrization is

x1 = f1(t1,...,tm)
g1(t1,...,tm)

...
xn = fn(t1,...,tm)

gn(t1,...,tm) .

For W = V(g1 · · · gn) ⊂ km we define the mapping

F : km \W → kn

as follows:

F (t1, . . . , tm) =
(
f1(t1, . . . , tm)
g1(t1, . . . , tm) , . . . ,

fn(t1, . . . , tm)
gn(t1, . . . , tm)

)
.

For
i(t1, . . . , tm) := (t1, . . . , tm, f1(t1, t2, . . . , tm), . . . , fn(t1, . . . , tm))
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and
πm(t1, . . . , tm, x1, . . . , xn) := (x1, . . . , xn)

we have the relation

���
i

-

F

@@R
πm

km \W kn

kn+m

Since F = πm ◦ i, so F (km) = πm(V ), where V = i(km).

Lemma 12
Let

xi = fi(t)
gi(t)

, i = 1, . . . , n

be a rational parametrization of one parameter t such that polynomials gi(t) and
fi(t) are coprime. Let I = 〈g1x1 − f1, . . . , gnxn − fn〉. If I ⊂ k[t, x1, . . . , xn], then
V(I1) is the smallest variety containing F (k \W ).

2. Plane curves

We present an application of Gröbner Bases theory for finding an polynomial
equation for parametrically defined curve. Let us start with a well-known cubic.

Example 13
A plane curve studied by Descartes and Roberval in 1638, now called the folium of
Descartes, highlighted the weaknesses of the method of Fermat in finding extreme
of an algebraic curve. The rational parametrization of the Folium of Descartes is:

x = 3t
1+t3 ,

y = 3t2
1+t3 .

Note, that both pairs of the polynomials 3t, 1+t3 and 3t2, 1+t3 (of one parameter)
are coprime. Let I = 〈f, g〉, where

f := x+ xt3 − 3t, g := y + yt3 − 3t2

be defined as in the Lemma 12, so the variety V(I1) is the smallest variety con-
taining F (k \ V((1 + t3)(1 + t3))). Fixing lex order with y ≺ x ≺ t and using
Singular we get:

Computations in Singular:
> ring R = 0, (t, x, y), lp;
> ideal I = x + xt3− 3t, y + yt3− 3t2;
> eliminate (I, t);
_[1] x3− 3xy + y3
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And finally, we get the polynomial equation in two variables of the folium of
Descartes:

x3 − 3xy + y3 = 0.
To find the polynomial equation of the folium of Descartes we can also use the

Figure 1: The folium of Descartes.

resultant - a classical tool of the theory of elimination. Resultant is the determinant
of the Sylvester matrix for two fixed polynomials. For the definition and basic
properties of the resultant see for Example [3]. Let us recall the fundamental
theorem for applications of the resultant in the elimination theory:

Theorem 14
Let f, g ∈ k[x1, . . . , xn] and for fixed 0 ≤ i ≤ 1 we have degxi

f > 0 and degxi
g > 0.

Then
Res(f, g, xi) ∈ 〈f, g〉 ∩ k[x1, . . . , xj−1, xj+1, . . . , xn].

Put f := x+ xt3 − 3t and g := y + yt3 − 3t2. The resultant of f and g is:

Res(f, g, t) = det


x 0 −3 x 0 0
0 x 0 −3 x 0
0 0 x 0 −3 x
y −3 0 y 0 0
0 y −3 0 y 0
0 0 y −3 0 y

 =

= −27(x3 + y3 − 3xy).
The equation

x3 + y3 − 3xy = 0,
is, by Theorem 14 and Theorem 8, the polynomial equation of the folium of
Descartes.
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Cubic curves play an important role in numerous area of mathematical and
physical sciences. An interesting class of naturally parametrized cubics arises in
Computer Aided Design (CAD). The underlying idea was developed in the late
1950s by two design engineers working for rival French car companies, namely
Bézier (working for Renault) and Castlejau (working for Citröen) (see: [4], p. 8).
A cubic Bézier’s curve is a curve, defined by two end points and two interme-
diate points, so a cubic Bézier’s curve interpolate end points and approximate
intermediate points. Let b0, b1, b2, b3 be four point in the Euclidian plane, the
curve starts at b0 and ends in b2. The cubic Bézier curve defined by control points
b0, b1, b2, b3 is the path traced by the vector function:

B(t) = (1− t)3b0 + 3t(1− t)2b1 + 3t2(1− t)b3 + t3b2.

This vector function gives the parametric equation of the cubic Bézier curve. We
can use the presented effective method, based on the theory of Gröbner Basis, to
find the polynomial equation for the cubic Bézier curve.

Example 15
Let (−1,−1), (−1, 1), (1, 1), (1,−1) be the four points defining the cubic Bézier
curve. For the polynomial equation of the curve defined by B, consider the
parametrization of the Bézier curve:

x = −4t3 + 6t2 − 1
y = 8t3 − 12t2 + 6t− 1

Fix lex order with y ≺ x ≺ t and apply the CoCoA program for the Gröbner basis.
We get:

Computations in CoCoA:
Use R ::= Q[t, x, y];
I := Ideal(x + 4t∧3− 6t∧2 + 1, y− 8t∧3 + 12t∧2− 6t + 1);
Elim([t], I);
Ideal(1/27x∧3 + 1/18x∧2y + 1/36xy∧2 + 1/216y∧3− 1/8y)

The polynomial equation of the Bézier curve with control points (−1,−1), (−1, 1),
(1, 1), (1,−1) is:

8x3 + 12x2y + 6xy2 + y3 − 27y = 0.

Figure 2: Bézier curve with control points (−1,−1), (1, 1), (−1, 1), (1,−1).



[14] Katarzyna Jedynak, Justyna Szpond

Proceed for the resultant’s methods of determining the polynomial equation of
the cubic Bézier curve we put

f := x+ 4t3 − 6t2 + 1, g := y − 8t3 + 12t2 − 6t+ 1,

so the resultant of f and g is:

Res(f, g, t) = det


4 −6 0 x+ 1 0 0
0 4 −6 0 x+ 1 0
0 0 4 −6 0 x+ 1
−8 12 −6 y + 1 0 0
0 −8 12 −6 y + 1 0
0 0 −8 12 −6 y + 1

 =

= 64(8x3 + 12x2y + 6xy2 + y3 − 27y).

The equation
8x3 + 12x2y + 6xy2 + y3 − 27y = 0,

is, by Theorem 14 and Theorem 8, the polynomial equation of the considered
Bézier curve.

3. Surfaces

Finally we consider parametrically defined surfaces. We use methods of the
theory of Gröbner Bases to give an effective method for finding the implicit poly-
nomial equation of the surface. First example is the following:

Example 16
Consider the surface given by the polynomial parametrization:

x = t(u2 − t2),
y = u,
z = u2 − t2.

We fix lex order with z ≺ y ≺ x ≺ t ≺ u and compute the Gröbner basis of the
polynomial ideal I generated by:

g1 = u− y
g2 = t2 − y2 + z
g3 = tz − x
g4 = tx− y2z + z2

g5 = x2 − y2z2 + z3

The Elimination Theorem follows that I2 = I ∩ R[x, y, z] = 〈g5〉, and thus by
Theorem 10, V(g5) solves the implicitization problem for the surface. The equation
x2 − y2z2 + z3 = 0 defines the smallest variety in C3 containing the surface. But
the question: ’If the surface fills up all of V(g5) ⊂ R3?’ is still open. To answer,
we must examine whether all partial solutions (t, u, x, y, z) ∈ V(I) extend to
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V(g5). Let us start with (x, y, z) ∈ V(I2) = V(g5). The ideal I2 is the first
elimination ideal of I1. By the Elimination Theorem, we have I1 = 〈g2, . . . , g5〉.
Then Corollary 9 implies that (x, y, z) always extends to (u, x, y, z) ∈ V(I1)
since I1 has a generator with a constant leading coefficient of u. And finally, from
(u, x, y, z) ∈ V(I1) to (t, u, x, y, z) ∈ V(I), using Corollary 9 again, we can
always extend since g1 = u − y has a constant leading coefficient of t. We have
thus proved that the considered surface is V(g5).

Figure 3: The locus of x2 − y2z2 + z3 = 0.

Example 17
Consider the surface given by the polynomial parametrization:

x = uv
y = u2

z = v2.

We can proceed as in Example 16 or apply the function of the Singular. Let fix
lex order with z ≺ y ≺ x ≺ v ≺ u and compute the implicit polynomial equations:

Computations in Singular:
> ring R = 0, (u, v, x, y, z), lp;
> ideal I = x− uv, y− u2, z− v2;
> eliminate (I, uv);
_[1] x2− yz

The surface is the locus of x2 − yz = 0.
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Figure 4: The locus of x2 − yz = 0.

Example 18
Consider the surface given by the polynomial parametrization:

x = uv,
y = uv2,
z = u2.

We can proceed as in Example 16 or apply the CoCoA. For computation, we fix
lex order with z ≺ y ≺ x ≺ v ≺ u and find the implicit polynomial equation. The
surface is the locus of x4 − y2z = 0.

Computations in CoCoA:
Use R ::= Q[u, v, x, y, z];
I := Ideal(x− uv, y− uv∧2, z− u∧2);
Elim([u, v], I);
Ideal(x∧4− y∧2z)

Figure 5: The locus of x4 − y2z = 0.
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Finally we consider the Enneper surface,

Example 19
The parametrical equations of Enneper surface are:

x = 3u+ 3uv2 − u3,
y = 3v + 3u2v − v3,
z = 3u2 − 3v2.

For finding the polynomial equation of the smallest variety V containing the En-
neper surface we consider the ideal I = 〈x−3u−3uv2 +u3, y−3v−3u2v+v3, z−
3u2 + 3v2〉. Fix lex order with z ≺ y ≺ x ≺ v ≺ u and compute the Gröbner basis
for I. By the Elimination Theorem I2 = I ∩ R[x, y, z] is the ideal generated
by first polynomial of the Gröbner basis calculated in the Singular. Using similar
argument as in Example 16 we can show that this polynomial defines the smallest
subvariety in C3 in which the Enneper surface is contained.

Figure 6: The Enneper surface.
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Computations in Singular:
> ring R = 0, (u, v, x, y, z), lp; option(redSB);
> ideal I = x− 3u− 3uv2 + u3, y− 3v− 3u2v + v3, z− 3u2 + 3v2;
> std(I);
_[1] = 19683x6− 59049x4y2 + 10935x4z3 + 118098x4z2− 59049x4z+
59049x2y4 + 56862x2y2z3 + 118098x2y2z + 1296x2z6 + 34992x2z5+
174960x2z4− 314928x2z3− 19683y6 + 10935y4z3− 118098y4z2−
59049y4z− 1296y2z6 + 34992y2z5− 174960y2z4− 314928y2z3− 64z9+
10368z7− 419904z5
_[2] = 8748vy3z2 + 648vyz5 + 5832vyz4 + 17496vyz3 + 17496vyz2− 729x4z−
2187x4 + 5832x2y2z + 4374x2y2− 189x2z4− 2997x2z3− 5103x2z2 + 6561x2z−
5103y4z− 2187y4− 945y2z4 + 81y2z3− 16767y2z2− 6561y2z + 8z7−
48z6− 864z5 + 3888z4 + 17496z3
_[3] = 27vx2z + 81vx2 + 135vy2z− 81vy2 + 8vz4 + 96vz3 + 216vz2+
81x2y− 81y3− 12yz3− 324yz
_[4] = 4374vx2y + 8748vy3z− 4374vy3 + 648vyz4 + 5184vyz3 + 17496vyz2−
729x4 + 5832x2y2− 189x2z3− 2430x2z2 + 2187x2z− 5103y4− 945y2z3+
972y2z2− 19683y2z + 8z6− 72z5− 648z4 + 5832z3
_[5] = 2187vx4 + 69984vx2 + 8748vy4z− 2187vy4 + 648vy2z4 + 3240vy2z3−
11664vy2z2 + 139968vy2z− 69984vy2− 192vz6− 3456vz5− 15552vz4+
20736vz3 + 186624vz2− 729x4y + 5832x2y3− 189x2yz3− 7047x2yz2−
23328x2yz + 69984x2y− 5103y5− 945y3z3 + 1215y3z2 + 5832y3z− 69984y3+
8yz6 + 288yz5 + 216yz4 + 5184yz3 + 93312yz2− 279936yz
_[6] = 18v2z2 + 54v2z− 54vyz− 27x2 + 27y2 + z3− 18z2 + 81z
_[7] = 54v2yz + 27vx2− 27vy2 + 8vz3 + 72vz2− 9yz2− 27yz
_[8] = 243v2x2− 243v2y2− 1296v2z− 108vyz2 + 324vyz + 108x2z + 648x2+
135y2z− 648y2− 4z4 + 48z3 + 108z2− 1944z
_[9] = 2v3 + vz + 3v− y
_[10] = 27uy2− 8uz3 + 72uz2− 36v2xz− 27vxy− 24xz2
_[11] = 9ux + 6v2z− 9vy + z2− 9z
_[12] = 4uvz− 3uy + 3vx
_[13] = 9uvy− 2uz2 + 18uz− 9v2x− 6xz
_[14] = 6uv2− uz + 9u− 3x
_[15] = 3u2− 3v2− z
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