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Conjugations in C"

Streszczenie. W pracy bedziemy rozpatrywaé izometryczne, antyliniowe in-
wolucje w przestrzeni C". W szczegolnosci skoncentrujemy sie na odwzorowa-
niach liniowych, "symetrycznych" wzgledem zadanych inwolucji. Jednym
z naszych gléwnych celéw bedzie zbadanie zachowania macierzy Jordana
wzgledem wybranych inwolucji.

Abstract. In this paper we study cojugations (isometric antilinear invo-
lutions) in C™. In particular we concentriate on linear mappings which are
"symmetric" with respect to conjugations. One of our aims is to investigate
the behaviour of Jordan matrices according to various conjugations.

1. Introduction

The mapping C': z — Zz, z € C, is not linear because it does not satisfy the
condition of homogeneity. This kind of mapping can be generalized to all complex
Hilbert spaces and, in particular, to specific subspaces of analytic functions on the
unit disc in the context of truncated Toeplitz operators. In [I], [2], [3], [4], [6], [7]
these mappings have been considered in spaces of analytic functions. Our aim is
to consider these mappings only on C™.

2. Basic definitions and examples

Let us consider C™ with an inner product (-,-) and let I denote the identity
mapping in C™.

DEFINITION 2.1 ([5), Definition 1.1])
A conjugation C': C* — C™ is an isometric involution, i.e., mapping C' satisfies:

(i) (z,w) = (Cw,C%) for all z,w € C",
(i) C? =1.
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By this definition we have the following

COROLLARY 2.2
Let C: C™" — C™ be a conjugation in C™. Then C is antylinear, i.e.,

C(az + pw) = aC(z) + BC(w),
for all z,w e C" and o, B € C.

Proof. The standard properties of inner product show that

||C(az + pw) — aCz — fCw||?
= (C(az + pw) — aCz — BCw, C(az + pw) — aCz — BCw)
= (Claz + pw), Claz + pw)) + (Claz + pw), —aCz) + (Claz + pw), —FCw)
+ (—aCz,C(az + fw)) + (—aCz,—aCz) + (—aCz, —BCw)
+ (=pCw, C(az + pw)) 4+ (—BCw, —aCz) + (—BCw, —BCw)
= aa(z, 2) + Balw, z) + af(z,w) + BB(w,w) — aa(z, z) — af(z,w)
—aBlw, 2) — BBlw,w) — ad(z, z) — af(w, z) + aa(z, z) + af(w, 2)
— B, w) — BB{w, w) + Bz, w) + BB{w, w) = 0.

Consider various examples of conjugations.

ExXAMPLE 2.3
(1) C: C™ —» C", C(z1,22,---,2n) = (21,22, .-, 2n) named standard conjuga-
tion (see [2, Prealiminaries 2.1));

(2) C:C" = C™, C(z1,22,.--,2n) = (Zn, ..., 22,21) named canonical conjuga-
tion (see [2, Example 4];

(3) C: C2 = C2, C(z1,2) = (ﬂlﬁzzl I L ﬂlﬂz@),
a € C\ {i,—i} (see [2, Example 5]);

(4) CZC"%C”, C(Zl,...,zk,zk+1,...,zn):(Ek,...751,§n...72k+1);

e 8 (s s s = = = = =
(5) C:C® = C®, C(z1, 22, 23, 24, 25, 26, 27, 28) = (%2, 21, Z5, 24, 23, 28, 27, 26 -

3. C-symmetric linear mappings

Before stateing the main definition, recall some basic properties of linear map-
pings. Let L(C™) be the set of all linear mappings in C™ and let M, x,(C) be the
set of all n—by—n matrices. Let us fix B ={ey,...,e,} an orthonormal basis in C".
It is well known that there exists an isomorphism

L(C™) =~ M,x,(C).
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In particular, for A € L(C"),

<A617€1> <A62761> <Aen7el>
(Aeq,e2) (Aes,ea) (Aep, e2)
<A617 en> <Ae27 en> e <Aen7 en>

Recall also that for every A € L(C™) there exists the adjoint mapping which
is defined by the equality

(Az,w) = (z, A"w), z,weC".
Note that if A = [ag], then A* = [az]’.

DEFINITION 3.1
Let C': C™* — C™ be a conjugation. For A € L(C") recall that

(i) A is said to be C-symmetric if CAC = A*, [2], p.1286];
(ii) A is C-skew-symmetric if CAC = —A*, [1, p.13].

PROPOSITION 3.2
Let C: C™ — C™ be a conjugation, A, B € L(C™) and let o, 3 € C. The following
hold.

(i) A is C—symmetric if and only if (Az, Cw) = (z, CAw), z,w € C";
(ii

(ii

A is C—skew-symmetric if and only if (Az, Cw) = (z, —C Aw), z,w € C";
The identity I is C'—symmetric;

)
)
)
)

(iv) The mappings A, B are C—symmetric if and only if « A+ BB is C—symmetric

for all o, 8 € C.

Proof. We only prove (iv). By the definition we have CAC = A* and CBC = B*.
Easy calculation shows that

C(aA+ BB)C = C(aA)C + C(BB)C = aCAC + BCBC
= aA* 4 BB* = (aA + BB)*.

We now give examples of C—symmetric mappings.

ExaMPLE 3.3 ([2, Example 5])
Let us take a conjugation C,: C? — C2 given by

Ca(Zl, 22) = (\/11(12 1+ \/13_(12 29, \/11(12 Z1 — \/13_(12 22) , a€C \ {i, —i}.

The linear mapping A € L(C?) given by A(z1, 22) = (21 +az9,0) is C,—symmetric.



[4] K. Simik, A. Wicher, A. Zborowska

EXAMPLE 3.4

Let us consider C3 and the canonical conjugation [Example (2)] in this space,
ie., C(21,22,23) = (Z3,22,21) for all (21,22,23) € C3. Let A € L(C3) be given
by A (zl,zg,zg) = (iz1 — iz9 + 2iz3, —izo — iz3,i23). It can be seen that A is
C—symmetric by the following:

CAC(Zl, 22, Zg) = CA(Eg, 22, 21)
= C(iz3 — i%y + 2051, —i% — i71,i%))
= (—7:2’1, 121 + 129, —2121 + 129 — ’iZ3)

= A*(Zl, 292, 23).

4. Special properties of Jordan Matrices

It what follows we will see that C—symmetry of a linear mapping in C" can be
denoted from its matrix representation. Let us consider the canonical conjugation
[Example (2)] and the linear mapping A € L(C?) given by

A(z1, 29, 23) = (iz1 — iz9 + 2iz3, —i29 — i23,123).

We can observe that the matrix representation [aivj]i:1,2,3 of this mapping, ac-
j=1,2,3
cording to the canonical basis, is symmetric with respect to its second diagonal,

ie.,

aj;p = ass, a21 = azz, a2 = az3.
We will show below that every linear mapping A € L(C™), which has this property,
is C—symmetric.

THEOREM 4.1

Let C be the canonical conjugation in C™ [Example 2)] andlet B={e1,...,en}
be the canonical basis. Then A € L(C") is C—symmetric if and only if its matriz
representation [a;;] accoording to the basis B is symmetric with respect to the second
diagonal, i.e., a;; = Apn—j41in—i+1, 45 =1,2,...,n.

Proof. Firstly let us observe that Ce; = e,_;11, ¢ = 1,2,...,n. Using only the
definition of a conjugation we get

Qi = <A€j,6i> = <C€i,CA€j> = <C€i,A*O€j>

= (ACe;, Cej) = (Aen_iy1,€n—ji1) = On_jiin—it1-
|

In what follows C™ is decomposed to the orthogonal sum, i.e. wy+---+wp =n
and C" = C*"*1 @ C%2 @ - - - C™F. We can also consider a conjugation C': C* — C"
given by the orthogonal sum of canonical conjugations C,, on each C"¢ ¢ =
1,...,k, ie.,

C=Cp, @®Chpy @@ Chyy, (4.1)
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that means

C(Z1y -+ s Zwgs Zwndly - oo By - - v s B - - - s Zawgy)

= (ZuwysevrZ1s Zwas v o3 Zwrdtls s Zwgs - -+ Zawp—1)-
Now let us consider a Jordan block given by
In(A) =X+ S, deC.

By S,, we mean the trunkated shift in C", S,,(21,...,2m) = (0,21,..., 2Zm—1)-
Then S}, (21, .., 2m) = (22, 23, . - ., Zm, 0). Note that S,,, is C—symmetric according
to the canonical conjugation [Example 2)] Indeed, for every (z1,...,2y,) € C™
we have

CSmC(Zl,...,Zm) = OSm(Em, ,21) = C(O,Em,.. .,52)

=(22y..,2m,0) =S’ (21, 2m).

Note that the Jordan block J,,(A) is C—symmetric with respect to the canonical
conjugation by Proposition for all A € C.

The well-known cannonical Jordan decomposition theorem says that for every
linear mapping A € L(C") there exists an invertable mappipng V such that its
matrix representation is

kaa(/\k—l) 0
0 0 Juw, (Ak)

where \,, € C,m =1,...,k and wy + --- + wi = n. We can see that the Jordan
matrix J is usually not C—symmetric according to the canonical conjugation in
C™. Now let us consider the conjugation C': C™* — C" given by equation .

We can notice that Jordan matrix is C—symmetric and we show this property
by following calculation:

CIC =(Cp, ®Clyy @+ ®Cp ) (Juyy BTy @ B Jup, ) (Crvy B Crpy @+ ® Chy,.)
= C1Juw, C1 © CaJy,Co @ -+ & Cp oy, Cp = Jy,, © Ty, - B Jy, = J".

5. Some basic properties of C—symmetric mappings

In this section we will study some basic properties of C—symmetric mappings
in C™.

THEOREM 5.1 ([2], Proposition 1])
Let C be a conjugation in C™ and let A € L(C™) be invertible. The mapping A is
C-symmetric if and only if A~ is also C-symmetric, i.e., CA~'C = (A~1)*.
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Proof. Note by (2.1) that the conjugation C' is invertible as a mapping with
C~! = (C. Standard properties of inverse mappings show that

CA™'C=Cc'A7Ic7 = (cAC)™ = (A" = (A7 H~.
]

THEOREM 5.2
Let C be a conjugation in C™ and A € L(C™). The mapping A is C—symmetric
and C-skew-symmetric if and only if A = 0.

Proof. 1If we can write CAC = A* and CAC = —A*, then it implies 24* = 0,
which means A = 0. The converse is obvious. |

We can also introduce orthogonality in connection with C'-symmetry. Define
the following relation between vectors. Let C' be a conjugation in C". We follow
the notation of 7, p.14] and define [z, w]c := (z, Cw). Vectors z and w are said to
be C—orthogonal, if

[z, w]c = 0.

Recall without proof that the following holds.

THEOREM 5.3 ([7), Proposition 2.1])
Let A € L(C™) be a C—symmetric mapping in C™. Eigenvectors of the mapping A,
which correspond to different eigenvalues, are C'—orthogonal.

ExAMPLE 5.4 ([7, Example 2.4])

Let C be the canonical conjugation in C2 1) and let A € L(C") be a C—
symmetric mapping given by A(z1,22) = (21 + i22,i2z1). The eigenvalues of A
are A\ = % + @i, Ay = % — ?z and the corresponding eigenvectors are vy =
ﬁ(\/g— 1,2), vg = ﬁ(—\/g— i,2). Vectors vy i vy are not orthogonal but they

are C—orthogonal.

THEOREM 5.5 ([5l, p. 2758])
Let C: C* — C™ be a conjugation. Every linear mapping A € L(C™) can be
represented by

A=Ac+ Asc,
where Ac = (A + CA*C) and Agc = 3(A — CA*C). The mapping Ac is C-
symmetric and Agc is C—skew-symmetric. That decomposition is unique.

Proof. Let z,w € C™. Using only the definition of a conjugation we show
below that (CAC)* = CA*C [, proof of Theorem 4.2]. Namely,

(CACz,w) = (Cw, ACz) = (A*Cw,Cz) = (2, CA*"Cw) = ((CA*C)*z,w).

Now we will show that Ag and Agc are C—symmetric and C—skew-symmetric,
respectively. Indeed,

AL = YA+ CAC)r = 1A 4 L(cAr0)r = 1" + Loty C
— LCCA*CC + LCAC = CL(CA*C + A)C = CAcC
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and
o= %(A —CA*C)* = %A* — %(CA*C)* = %A* — %C’(A*)*C’
= %CC’A*CC — %CAC’ = C’%(CA*C —A)C = —C%(A —CA*C)C
= —CAgcC.
Note that

FA+CAC)+L(A-CcAC)=3A+ LA+ LicAC - LCAC = A

Now we proof that this decomposition is unique. Let us suppose that A = Ao +
Aisc and A = Ase + Asge. Then 0 = Ao — Ao + A1sc — Aasc. Therefore
Aic — Ayc = Asgc — Aisc. Hence by Theorem we have A;c — Asc = 0 and
AQSC - AlSC = O, which implies AlC = AQC and AlSC = Azsc. |

EXAMPLE 5.6

Consider C?, the canonical conjugation C: C* — C3, C(z1, 22, 23) = (23, 22, 21)
and A € L(C3) given by A(z1,22,23) = (iz1 + 22 + iz3, —iz2 + 23,21 + i23). If
Ac = %(A + CA*C) and Asc = %(A — CA*C), then A = Ac + Asc.

Ac(z1, 22, 23) = 5((iz1 + 22 + i23, —iz2 + 23,21 + i23) + CA* (23, %2, 71))
= %((zzl + 29 +iz3, —iz9 + 23,21 +123)
FC(—i% + 21,53 + 050, —i53 + 72 — i71))
= %((zzl + 29 +iz3, —i29 + 23,21 + 123)
+ (iz1 + 22 +iz3, —iz0 + 23,21 +i23))

= (izl + 29 +i23, —i29 + 23,21 +123)

Ag(z1,22,23) = %((zzl + 29 +iz3, —i2y + 23,21 +i23) — CA*(23,22,21))
= %((221 + 29 +iz3, —iz9 + 23,21 + 123)
— C(—iz3+ 21,23 + 129, —i23 + 22 — i21))
= %((zzl + 29 + 23, —iz9 + 23,21 + 123)

+ (121 + 22 + 23, —iz2 + 23,21 +i23)) = 0

(Ac + Ag)(21, 22, 23) = ((iz1 + 22 + iz3, —iz2 + 23,21 +i23) +0)
= A(Zl7 22, 23)

The proof that A¢ is C—symmetric and Ageo is C—skew-symmetric we left to the
reader.
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