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Invariant subspaces, reflexivity, hyperreflexivity

Abstract. The problem of existence of a nontrivial invariant subspace for an
arbitrary operator in a complex Hilbert space is one of the most challenging
unsolved problem in the whole operator theory. The problem and partial
results are presented. The notions of the reflexivity and the hyperreflexivity
are closely related to the main one.

1. Introduction

The paper is based on the talk with the same title given on „XI Sympozjum
Kół Naukowych; Obudź w sobie matematykę!”, Kraków, 08-10.04.2016. The aim
of the talk and of the paper is to present one of the modern topics in Mathema-
tics: the operator theory in Hilbert spaces. Especially, almost a hundred years old
problem of the existence of a nontrivial invariant subspace for an arbitrary operator
in a complex Hilbert space. We also discuss the reflexivity and the hyperrefle-
xivity problem as closely connected with the main one. Some open problems are
presented.

The talk and the paper are dedicated to students, also to undergraduate. The
author have tried to present the topic in a simple way, giving rather ideas and
examples than precise proofs.

2. Hilbert spaces and operators

In what follows we will consider a complex separable Hilbert space H. It means
thatH is a vector space over C and there is a complex inner product 〈·, ·〉 : H×H →
C. The inner product defines a norm ‖ · ‖ : H → R+, ‖h‖ =

√
〈h, h〉, for h ∈ H,

and a metric (distance) d(·, ·) : H×H → R+, d(f, g) = ‖f − g‖ =
√
〈f − g, f − g〉

for f, g ∈ H. According to the definition of a Hilbert space we assume that the
space (H, d) as a metric space is complete. The set {ek}k∈I ⊂ H is called an
orthonormal basis of H if the set {ek}k∈I consist of orthogonal unit vectors (i.e.
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for all k,m ∈ I we have 〈ek, em〉 = 0 for k 6= m and ‖ek‖ = 1) and the set {ek}k∈I
is maximal in the sense that there is no set of orthogonal unit vectors properly
containing the set {ek}k∈I . The essential property of the basis is that each h ∈ H
can be uniquely represented as h =

∑
k∈H hkek for some set of complex numbers

{hk}. For more properties of Hilbert spaces see [9].
Let as recall some examples of Hilbert spaces.

Example 2.1
The space Cn with the inner product:

〈z, w〉 = z1w1 + z2w2 + · · ·+ znwn =
n∑
k=1

zkwk

for z, w ∈ Cn, z = (z1, . . . , zn), w = (w1, . . . , wn), is a Hilbert space.

Example 2.2
The space Cn or any finite dimensional complex vector space V (dimV <∞) with
an arbitrary inner product is a complex Hilbert space.

Example 2.3 ([9, Example I.1.3])
The space of complex sequences indexed by N:

l2+ = {(hk)∞k=0 ⊂ C :
∞∑
k=0
|hk|2 <∞}

with the inner product: 〈h, g〉 =
∞∑
k=0

hkgk for h = (hk), g = (gk) ∈ l2+.

Example 2.4 ([9, Example I.1.7])
The space of complex sequences indexed by all integers:

l2 = {(hk)+∞
k=−∞ ⊂ C :

+∞∑
k=−∞

|hk|2 <∞}

with an inner product: 〈h, g〉 =
+∞∑

k=−∞
hkgk for h = (hk), g = (gk) ∈ l2.

Example 2.5 ([9, Example I.1.3])
A space of measurable L2 functions

L2[−π, π] = {f : [−π, π]→ C measurable :
∫

[−π,π]

|f(t)|2 dt <∞},

with an inner product 〈f, g〉 = 1
2π

∫
[−π,π]

f(t)g(t) dt.
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The space L2[−π, π] is unitarily equivalent to l2 space and this equivalence is

given by the Fourier representation h =
+∞∑

n=−∞
hne

inθ → (hn)+∞
n=−∞, see [9, Theo-

rem I.5.7].

Example 2.6 ([13])
The Hardy space:

H2 = {h : [−π, π]→ C : h(θ) =
∞∑
n=0

hne
inθ,

∫
[−π,π]

|h(θ)|2 dθ <∞}.

As we see H2 can be seen as a subspace of L2[−π, π] and using the Fourier repre-
sentation the space H2 can be identified with l2+.

The space H2 can be also seen as a subspace of the set of all holomorphic
functions on the unit disc D

H2 = {h : D→ C : h(z) =
∞∑
n=0

hnz
n, sup

0<r<1

∫
|h(reiθ)|2 dθ <∞}.

Moreover, functions from H2 have radial limits at almost every point in ∂D the
boundary of D.

Example 2.7 ([20, Chap. II, §9])
The space of states of a given system of particles in quantum mechanics.

Example 2.8 ([28, Chap. 3],[27, Chap. 3])
The space generated by a discrete stochastic process {ξn}∞n=0 ⊂ l2+ or continuous
stochastic process {ξt}t>0 ⊂ L2

(
R, 1√

2π e
− t2

2 dt
)
, where

L2
(
R, 1√

2π e
− t2

2 dt
)

= {f : R→ R measurable : 1√
2π

∫
R

|f(t)|2 e− t2
2 dt <∞}.

A linear function T : H → H is called a bounded operator on H, if there is
M such that ‖Th‖ 6 M‖h‖ for all h ∈ H. In fact, boundedness of the operator
T is equivalent its continuity. Let L(H) denote the set of all bounded linear ope-
rators. L(H) is a vector space. Moreover, it is an algebra with a composition as
a multiplication. The space L(H) is equipped with the norm ‖ · ‖ : L(H) → R+,
‖T‖ = sup{‖Tx‖ : x ∈ H, ‖x‖ 6 1} for T ∈ L(H). The norm defines the topology
in L(H). There is also Weak Operator Topology (WOT) on L(H), i.e. a topology
given by seminorms (h, g)→ 〈Th, g〉, T ∈ L(H) for h, g ∈ H. For more information
about topologies in L(H) see [10].

Let us give some examples of linear operators.
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Example 2.9 ([16])
Let e1, . . . , en be an orthogonal basis in Cn. Let A be any linear operator. Then
we can define aij = 〈Aej , ei〉, and the operator A can be identified with the matrix

A = [〈Aej , ei〉] = [aij ] =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 . (2.1)

Example 2.10 ([16])
An interesting example of an operator in Cn is a Jordan block operator Jn ∈
L(Cn), Jn(z1, z2, . . . , zn) = (0, z1, z2, . . . , zn−1). It can be identified with the ma-
trix

Jn =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0

 . (2.2)

The number n is called the size of the Jordan block.

Example 2.11 ([23, Chap. 3])
Let S ∈ L(l2+) be the unilateral shift defined as

S(h0, h1, . . . ) = (0, h0, h1, . . . ) for h = (h0, h1, . . . ) ∈ l2+. (2.3)

If e0, e1, . . . is the standard orthogonal basis in l2+, (i.e. ek = (0, . . . , 0,
(k)
1 , 0, . . .),

k ∈ N), then S has a matrix representation

S =


0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...
...
...
. . . . . .

 . (2.4)

Example 2.12 ([28, Chap. 3],[27, Chap. 3])
When we consider the Hilbert space generated by a discrete stochastic process
{ξn}n∈N, then there is a natural shift operator T (ξn) = ξn+1 for n ∈ N. If we
consider the Hilbert space generated by a continuous stochastic process {ξt}t>0,
then we can define the operator Ts for s > 0 by Ts(ξt) = ξt+s, t > 0.

3. Invariant subspaces

Let as consider an operator T in a Hilbert space H with dimH > 2, and let
as take a closed subspace L ⊂ H, (in what follows only closed subspaces will be
considered). By PL we denote the orthogonal projection onto the subspace L. We
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will call the subspace L invariant for T if TL ⊂ L, i.e., for any x ∈ L the vector
Tx also belongs to L. It is a trivial observation that the whole space H and the
zero space {0} are invariant for any operator T . Thus we will be interested only
in a nontrivial invariant subspace (L 6= H, L 6= {0}).

Example 3.1
Let us consider (only in this example) the real Hilbert space R2, with the standard

inner product, and an operator given by the matrix T =
[

0 1
−1 0

]
. Since dimR2 = 2,

thus a nontrivial invariant subspace have to have a dimension one. So it has to
be equal to R v for some vector v ∈ R, v = (v1, v2), v 6= 0. Thus Tv = λv, which
leads to equality λ2 + 1 = 0. Since this equality has no solution in R, we get to the
contradiction. Hence, even in the space R2, there are operators with only trivial
invariant subspaces.

The example above shows why we always assume that underlying Hilbert space
is complex when we talk about invariant subspaces.

Remark 3.2
Let T ∈ L(H) be any operator and let L ⊂ H a be nontrivial closed subspace. Then

H = L⊕L⊥, and the operator T can be represented metrically as T =
[
T11 T12
T21 T22

]
.

Note that L is invariant for T (i.e., TL ⊂ L) if and only if T21 = 0, i.e., T can be

represented as T =
[
T11 T12
0 T22

]
. Hence a nontrivial invariant subspace allows us to

simplify the representation of the operator.

Remark 3.3
Let T ∈ L(H) be any operator and λ ∈ C be its eigenvalue. Then there is a non
zero vector v such that Tv = λv. Hence the subspace C v is invariant for T .

Now let us consider an operator A ∈ L(H) in a finite dimensional Hilbert space
H (which is in fact unitarily equivalent to Cn). Then the existence of an eigenvalue
λ with an eigenvector v (i.e., Av = λv) is equivalent to v ∈ ker(A− λI). Hence λ
is an eigenvalue of A, if A−λI is not invertible. In other words, the characteristic
polynomial of A, z → wA(z) = det(A− z I) equals to 0 at λ. But the fundamental
theorem of algebra says that such λ always exists. Thus Remark 3.3 gives us the
following.

Proposition 3.4
Let A ∈ L(H), where H is a finite dimensional complex Hilbert space (dimH > 2).
Then A has a nontrivial invariant subspace.

Unfortunately there are operators which does not have any eigenvalue.

Example 3.5
Let S ∈ L(l2+) be the unilateral shift given by equation (2.3). Assume that λ is an
eigenvalue of S with an eigenvector h = (h0, h1, . . . ) 6= 0. Hence

Sh = (0, h0, h1, . . . ) = (λh0, λh1, . . . ) = λ(h0, h1, . . . ).
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If λ 6= 0, then we get h = 0. If λ = 0, then ‖h‖ = ‖Sh‖ = 0 implies also that
h = 0. Hence we get a contradiction.

Now let kλ = (1, λ, λ2, . . . ) with |λ| < 1. Then kλ ∈ l2+. The subspace Hλ =
{kλ}⊥ is invariant for S. Indeed, if h = (h0, h1, . . . ) ∈ Hλ, then

〈Sh, kλ〉 = 〈(0, h0, h1, . . . ), (1, λ, λ2, . . . )〉 = λ̄〈h, kλ〉 = 0

and Sh ∈ Hλ. Thus Hλ is invariant for S. Hence the unilateral shift S has a non-
trivial invariant subspace but it has not any eigenvalue.

We have shown that each operator in finite dimensional Hilbert space and the
unilateral shift have a nontrivial invariant subspace. There is a long list of ope-
rators in Hilbert spaces having a nontrivial invariant subspace: compact operators
([2]), operators which commute with compact operator ([19]), normal operators
(consequence of spectral theorem, [9, Theorem IX 2.2]), subnormal operators ([7]),
contractions with spectrum containing the unit circle ([8]), polynomially bounded
operators with spectrum containing the unit circle ([1]), but still there is no solu-
tion of the general problem stated probably by John von Neumann:

Open problem 3.6
Let H be a separable infinite dimensional complex Hilbert space. Let T ∈ L(H)
be any operator. Does T have a nontrivial invariant subspace, i.e., weather there
exists L ⊂ H, L 6= H, L 6= {0} such that TL ⊂ L.

The problem seems to be even more interesting, since there are examples of
Banach spaces and operators on those spaces, which do not have any nontrivial
invariant subspace, see [14, 24, 25].

Investigating an operator, which has an invariant subspace, we obtain certain
information about the operator and about its structure. Sometimes we can obtain
a description of all its invariant subspaces and they, in some sense, describe the
operator itself. Let Lat T denote the set of all closed invariant subspaces for the
operator T , i.e.,

Lat T = {L ⊂ H : TL ⊂ L}. (3.1)

The set Lat T from the algebraic point of view is a lattice with the intersection ∧
of subspaces and spanning ∨ of subspaces as operations.

Example 3.7
Let Jn be the Jordan block operator of size n given by the matrix (2.2). Then it
is easy to note that LatJn =

{
{0}, {0} ⊕ C, {0} ⊕ C2, . . . , {0} ⊕ Cn−1,Cn

}
.

When we consider operators in a finite dimensional Hilbert space, we can in-
vestigate their characteristic polynomials. By the fundamental theorem of algebra
we obtain all its eigenvalues with multiplicities λ1, . . . , λk. The classical Jordan
theorem says
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Theorem 3.8 ([16, Theorem 3.1.11])
Let A ∈ L(H), where H is a finite dimensional complex Hilbert space. Let λ1, . . . , λk
be eigenvalues of A with multiplicities. Then

A '


Jn1 − λ1In1 0 · · · 0

0 Jn2 − λ2In2 · · · 0
...

...
. . .

...
0 0 · · · Jnk

− λkInk

 ,
for certain sizes n1, . . . nk (' means similarity).

Recall also that we say that an operator A ∈ L(H) is similar to operator B ∈ L(H)
if there is an invertible operator S ∈ L(H) such that A = S−1BS.

The theorem above can give us a description of an invariant subspace by using
the similarity and Example 3.7.

Now let us come back to the unilateral shift S ∈ L(l2+) given by (2.3). As we
have mentioned in Example 2.6, the space l2+ can be identified with the Hardy
space H2. Moreover the operator S ∈ L(H2) has the form (Sf)(z) = z f(z) for
f ∈ H2.

It is impossible to describe all invariant subspaces of the unilateral shift S
as the operator on l2+, but Beurling characterized all invariant subspaces of the
unilateral shift S as the operator on the Hardy space H2.

Theorem 3.9 ([6])
Let S ∈ L(H2) be the unilateral shift given by (Sf)(z) = z f(z) for f ∈ H2.
ThenM 6= {0} is invariant subspace of S (M∈ Lat S) if and only if there exists
a holomorphic function ϕ : D→ C such that |ϕ(z)| = 1 a.e. z ∈ ∂D andM = ϕH2.

(The function ϕ is formally defined on D, but by its values on the unit circle ∂D
we understand the radial limits, see Example 2.6.)

We can give examples of such functions ϕ fulfilling the theorem above.

1. p(z) = zn,

2. B(z) =
∞∏
n=1

|an|
an

z−an

1+anz
, |an| 6 1,

∞∑
n=1

(1− |an|) <∞,

3. S(z) = exp
(
− 1+z

1−z

)
.

The next interesting example of an operator, for which we can give a full
description of its invariant subspaces, is the Voltera operator:

V : L2[0, 1]→ L2[0, 1], (V f)(x) =
x∫

0

f(t) dt for f ∈ L2[0, 1].

For any α ∈ [0, 1] let us denote byMα = {f ∈ L2[0, 1] : f(t) = 0 for t ∈ [0, α]}.
It is easy to see that VMα ⊂ Mα, i.e., Mα ∈ Lat V . Moreover, all invariant
subspaces for V are of this form.
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Theorem 3.10 ([10, Theorem 28.3])
Let V : L2[0, 1]→ L2[0, 1] be the Voltera operator given by (V f)(x) =

x∫
0
f(t) dt for

f ∈ L2[0, 1]. Then Lat V = {Mα : α ∈ [0, 1]}.

4. Reflexivity

When a given operator T ∈ L(H) has a nontrivial invariant subspace, we can
ask if it has enough invariant subspaces that they characterize the operator T
itself. Recall that Lat T denotes the set of all closed invariant subspaces for the
operator T . Now let us consider the set of all operators which leave invariant all
subspaces from Lat T , i.e.,

Alg Lat T = {B ∈ L(H) : BL ⊂ L for all L ∈ Lat T}.

It is clear that all powers of T belong to Alg Lat T . It means that Tn ∈ Alg Lat T
for all n ∈ N. Moreover, if p is a polynomial, p(z) = a0 + a1z + · · · + anz

n, then
p(T ) = a0I+a1T + · · ·+anT

n ∈ Alg Lat T . It is easy to observe that Alg Lat T is,
from the algebraic point of view, an algebra. From the topological point of view,
Alg Lat T is closed in the weak operator topology (WOT). Let W(T ) denote the
smallest algebra containing the operator T , the identity IH, and closed in the weak
operator topology. In other words, it is a WOT closure of the set

{p(T ) : p is a polynomial}.

From the discussion above W(T ) ⊂ Alg Lat T . Following D. Sarason (see [26]) we
will call the operator reflexive if W(T ) = Alg Lat T .

We mean that invariant subspaces characterize the operator T in the sense
that Alg Lat T is as small as it can be, i.e., Alg Lat T =W(T ).

The notion of reflexivity is interesting even in a finite dimensional case.

Example 4.1
The operator T1 =

[
0 0
1 0

]
∈ L(C2) is not reflexive. Indeed,

W(T1) = {αIC2 + βT1 : α, β ∈ C} =
{[

α 0
β α

]
: α, β ∈ C

}
,

while
Lat T1 = {{0} ⊕ {0}, {0} ⊕ C,C⊕ C}.

It is straightforward that subspace {0}⊕C is invariant for the operator
[
α 0
β γ

]
for any α, β, γ ∈ C. In fact

Alg Lat T1 =
{[

α 0
β γ

]
: α, β, γ ∈ C

}
and W(T1) ( Alg Lat T1.
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Example 4.2
The operator T2 =

[
0 0
1 0

]
⊕ [0] =

0 0 0
1 0 0
0 0 0

 ∈ L(C3) is reflexive. Indeed, observe

firstly that W(T2) =
{[

α 0
β α

]
⊕ [α] : α, β ∈ C

}
. It is easy to see that

C2 ⊕ {0}, {0} ⊕ {0} ⊕ C, {0} ⊕ C⊕ {0} ∈ Lat T2.

Hence if B =

 α α1 α2
β γ α3
α4 α5 δ

 ∈ Alg Lat T2, the previous observation leads to

B =

α 0 0
β γ 0
0 0 δ

. Since subspaces {(x, y, x) : x, y ∈ C}, {(0, x, x) : x ∈ C} belong to

Lat T2, we obtain α = δ and γ = δ. Hence Alg Lat T2 = W (T2).

Example 4.3
Let Jn be the Jordan block operator of size n given by the matrix (2.2). If p is
a polynomial, p(z) = a0 + a1z + · · ·+ anz

n, then

p(Jn) =



a0 0 0 · · · 0 0
a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0
...

...
. . . . . .

...
...

an−2 an−3 · · · · · · a0 0
an−1 an−2 · · · · · · a1 a0


.

Hence

W(Jn) =





a0 0 0 · · · 0 0
a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0
...

...
. . . . . .

...
...

an−2 an−3 · · · a1 a0 0
an−1 an−2 · · · · · · a1 a0


: ai ∈ C


.

On the other hand, it is easy to see that

LatJn = {{0}, {0} ⊕ C, {0} ⊕ C2, . . . , {0} ⊕ Cn−1,Cn}.

Thus each element of Alg LatJn has to be lower triangular and

Alg LatJn =





a00 0 · · · · · · 0
a10 a11 0 · · · 0
...

...
. . . . . .

...
...

...
...

. . . 0
an−1,0 an−1,1 · · · · · · an−1,n−1

 : aij ∈ C


.

Finally, W(Jn) ( Alg LatJn and Jn is not reflexive.
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In fact the reflexive operators in a finite dimensional complex Hilbert space
were completely characterized by Deddens and Fillmore [12]. For simplicity, we
only present the result concerning a nilpotent operator. Recall that an operator
T ∈ L(H) is called nilpotent if and only if there is n ∈ N such that Tn = 0.

The main tool used in this characterization is the classical Jordan theorem,
Theorem 3.8. If T is a nilpotent in a finite dimensional Hilbert space, Theorem 3.8
gives similarity:

T '


Jn1 0 · · · 0

0 Jn2 · · · 0
...

...
. . .

...
0 0 · · · Jnk

 (4.1)

for certain sizes n1, . . . nk. It is not hard to see that reflexivity is kept under
similarity. That means that if A is similar to B, then A is reflexive if and only if
B is reflexive.

Theorem 4.4 ([12])
Let T ∈ L(Cn) be a nilpotent. The operator T is reflexive if and only if the dif-
ference of size of the two largest blocks in the representation (4.1) is at most 1.

The following examples illustrate the theorem above.

Example 4.5
The operator T ∈ L(C7), T =

0 0 0
1 0 0
0 1 0

⊕


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 is reflexive.

Example 4.6
The operator T ∈ L(C7), T =

0 0 0
1 0 0
0 1 0

⊕


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 is not reflexive.

Example 4.7
Let T ∈ L(Cn1), n1 = 1

2 (n+ 2)(n− 1), T = J2 ⊕ J3 ⊕ · · · ⊕ Jn, i.e.,

T =
[

0 0
1 0

]
⊕

0 0 0
1 0 0
0 1 0

⊕ . . .⊕


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0

 .

Then T is reflexive.
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Example 4.8
The operator T ∈ L(Cn(n+1)), T = J2 ⊕ J4 ⊕ · · · ⊕ J2n,

T =
[

0 0
1 0

]
⊕


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⊕ . . .⊕


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0


is not reflexive.

Talking about operators on infinite dimensional Hilbert spaces recall that Sara-
son proved reflexivity of the unilateral shift operator S ∈ L(l2+).

Theorem 4.9 ([26])
Let S ∈ L(l2+) be the unilateral shift. Then S is reflexive.

To prove reflexivity in Example 4.2 we have chosen very specific invariant
subspaces. The idea of the proof of Theorem 4.9 is based on choosing subspace
Hλ = {kλ}⊥, where kλ = (1, λ, λ2, . . . ), |λ| < 1. An easy observation is that
SHλ ⊂ Hλ. Next, using this subspace and the properties of the unilateral shift we
obtain the reflexivity.

The natural representation of the unilateral shift is

S =



0 0 0 0 0 · · ·
1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
...
...
...
...
. . . . . .


.

Thus S can be seen as the Jordan block of ”infinite” size and by comparing Exam-
ple 4.3 and Theorem 4.9 we conclude that S behaves „better ” than the Jordan
block Jn of size n.

Now we can ask about the operators in Example 4.7 and 4.8, if we change
a finite orthogonal sum to infinite one. Would they be reflexive? The following
theorem holds

Theorem 4.10 ([5])
The operator S1 = J2 ⊕ J3 ⊕ · · · ⊕ Jk ⊕ . . . , i.e.,

S1 =
[

0 0
1 0

]
⊕

0 0 0
1 0 0
0 1 0

⊕


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⊕ . . .
is reflexive.
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Remark 4.11
The main theorem in [5] shows, in fact, that operator S2 is also reflexive if S2 =
J2 ⊕ J4 ⊕ · · · ⊕ J2k ⊕ . . . , i.e.,

S2 =
[

0 0
1 0

]
⊕


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⊕ . . . .
Note that S1 and S2 have the following matrix representations

S1 =



0 0 0 0 0 0 0 0 0 0 0 . . .
1 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 1 0 0 0 0 0 0 0 0 . . .
0 0 0 1 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 1 0 0 0 0 0 . . .
0 0 0 0 0 0 1 0 0 0 0 . . .
0 0 0 0 0 0 0 1 0 0 0 . . .
0 0 0 0 0 0 0 0 0 0 0 . . .
...
...
...
...
...
...
...
...
...
...
...
. . .



S2 =



0 0 0 0 0 0 0 . . .
1 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 . . .
0 0 1 0 0 0 0 . . .
0 0 0 1 0 0 0 . . .
0 0 0 0 1 0 0 . . .
0 0 0 0 0 0 0 . . .
...
...
...
...
...
...
...
. . .


.

In the equation (3.1) we have defined the lattice of invariant subspaces of
a single operator. Now, for a given algebra of operators W ⊂ L(H), we define

LatW = {L ⊂ H : AL ⊂ L for A ∈ W } =
⋂
A∈W

LatA.

We have noticed above that, for a given operator T ∈ L(H), if the subspace L is
invariant for T , L ∈ Lat T , thus it is also invariant for any operator A ∈ W(T ).
Hence Lat T = LatW(T ).

Now let W ⊂ L(H) and W be an algebra. Then

Alg LatW = {B ∈ L(H) : BL ⊂ L for all L ∈ LatW}.

The algebra W is called reflexive if W = Alg LatW. It is straightforward that the
definition of reflexivity of an operator T coincides with the definition of reflexivity
of the algebra W(T ), i.e., T is reflexive if and only if W(T ) is reflexive. As an
example of a reflexive algebra, which is not singly generated, can be taken the
algebra of lower triangular matrices.

Theorem 4.12
The algebra An ⊂ L(Cn) is reflexive, where

An =





a00 0 · · · · · · 0
a10 a11 0 · · · 0
...

...
. . . . . .

...
...

...
...

. . . 0
an−1,0 an−1,1 · · · · · · an−1,n−1

 : aij ∈ C


.
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It is easy to see that LatAn = {{0}, {0} ⊕ C, {0} ⊕ C2, . . . , {0} ⊕ Cn−1,Cn} so

Alg LatAn =





a00 0 · · · · · · 0
a10 a11 0 · · · 0
...

...
. . . . . .

...
...

...
...

. . . 0
an−1,0 an−1,1 · · · · · · an−1,n−1

 : aij ∈ C


.

An investigation of reflexivity leads to the natural extension of the definition
to subspaces of operators. To understand the idea let us consider an algebra W ⊂
L(H) and its lattice of invariant subspaces LatW. Observe that L ∈ LatW is
equivalent to the property that for any x ∈ L, y ⊥ L and A ∈ W we have
〈Ax, y〉 = 0. Moreover, saying that B ∈ Alg LatW is equivalent to the condition
that for any L ∈ LatW and x ∈ L, y ⊥ L we have 〈Bx, y〉 = 0.

Following [18] for a subspaceM⊂ L(H) we can define

RefM = {B ∈ L(H) : ∀x,y∈H (〈Ax, y〉 = 0 for all A ∈M) =⇒ 〈Bx, y〉 = 0}.

The subspaceM is called reflexive if and only ifM = RefM. Clearly from above
ifM is an algebra, both definitions coincide.

Let us give some examples of reflexive and not reflexive subspaces of operators.

Example 4.13 ([4])
Let T ∈ L(H). Then a subspace CT is reflexive. In other words a one dimensional
subspace is always reflexive.

Example 4.14 ([4])
Let Tn ⊂ L(Cn) be the space of all Toeplitz matrices, i.e.,

Tn =





a0 a−1 · · · · · · a−n
a1 a0 a−1 · · · a−n+1

a2 a1 a0
. . .

...
...

...
. . . . . .

...
an an−1 · · · a1 a0

 : a−n, . . . , a−1, a0, a1, . . . , an ∈ C


.

Note that Tn is not an algebra and it is clear that it is not reflexive.

5. Hyperreflexivity

Let W be an algebra closed in the norm topology, and let B ∈ L(H) be any
operator. Then we can define the „usual” distance in the standard way:

dist (B,W) = inf{‖B −A‖ : A ∈ W} = inf{sup{‖Bx−Ax‖ : ‖x‖ 6 1} : A ∈ W}.
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We can define the distance from the operator B to W „taking into account
in B only this part, which is not invariant for elements of the lattice LatW”.
Precisely,

α(B,W) = sup{inf{‖P⊥L (B −A)PL‖ : A ∈ W} : L ∈ LatW}
= sup{inf{‖P⊥L BPL‖ : A ∈ W} : L ∈ LatW}
= sup{‖P⊥L BPL‖ : L ∈ LatW}.

(5.1)

As above, instead of considering the subspaces L in LatW we can use suitable
vectors x ∈ L, y ∈ L⊥ and following the same idea we can extend the definition
of the distance α to subspaces of operators. Namely, letM⊂ L(H) be a subspace
and let B ∈ L(H). Then

α(B,M) = sup{|〈Bx, y〉| : ‖x‖, ‖y‖ 6 1, 〈Ax, y〉 = 0, A ∈M}
= sup{|〈Bx, y〉 − 〈Ax, y〉| : ‖x‖, ‖y‖ 6 1, 〈Ax, y〉 = 0, A ∈M}.

If M is an algebra, then this definition coincides with (5.1). It is easy to see
that always α(B,M) 6 dist (B,M). We can ask, whether we can control the usual
distance dist by α distance. Now, following [3] and [18], a norm closed subspace
M⊂ L(H) will be called hyperreflexive if there is c > 0 such that

dist (B,M) 6 c α(B,M) for all B ∈ L(H). (5.2)

The smallest constant fulfilling (5.2) will be denoted by κM.
To see that hyperreflexivity is a stronger property than reflexivity, note that

〈Bx, y〉 = 0 for all x, y such that 〈Ax, y〉 = 0 for all A ∈ M if and only if
B ∈ RefW. Hence if B ∈ RefW, then the right hand side of (5.2) equals 0, thus
dist (B,M) = 0, It means that B ∈M, sinceM is norm closed.

The following lemma about the quotient space L(H)/M gives a deeper under-
standing of the notion of hyperreflexivity.

Lemma 5.1
LetM⊂ L(H) be a norm closed subspace. Then:

1. dist : L(H)/M→ R+ is a norm in L(H)/M,

2. α : L(H)/M→ R+ is a seminorm in L(H)/M,

3. IfM is reflexive, then α is a norm in L(H)/M.

To prove 5.1, recall from the above that if α(B,M) = 0 for some B ∈ L(H),
then B ∈ RefM. By reflexivity ofM, we get B ∈M.

In a view of Lemma 5.1 the question of hyperreflexivity of a subspace M is
equivalent to the question of the equivalence of the norms α and dist in the space
L(H)/M.

Note that if dimH <∞ then also dimL(H) <∞ and dimL(H)/M <∞ for
anyM⊂ L(H). Since all the norms in a finite dimensional subspace are equivalent,
we have the following
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Proposition 5.2
Let M ⊂ L(H) and dimH < ∞. Then M is reflexive if and only if and only if
M is hyperreflexive.

Theorem 4.12 says that the algebra of all lower triangular matricesAn ⊂ L(Cn)
is reflexive. Thus by Proposition 5.2 it is also hyperreflexive.

In fact, following Arverson we have

Theorem 5.3 ([3])
Let An ⊂ L(Cn) be the algebra of all lower triangular matrices. Then An is hy-
perreflexive and κAn = 1.

By Theorem 4.4 the operator Jn ⊕ Jn−1 (the orthogonal sum of the Jordan
blocks of size n and of size n−1) is reflexive, i.e.,W(Jn⊕Jn−1) is reflexive. Hence
it is hyperrreflexive. It is natural to ask about the constant κW(Jn⊕Jn−1).

Open problem 5.4
Is κW(Jn⊕Jn−1) bounded by a constant independent on n?

The next natural question put forward by Kraus and Larson [18] is whether
the reflexivity and the hyperreflexivity of a subspace are equivalent, when the
underlying Hilbert space is infinite dimensional but the dimension ofM is finite,
dimM <∞. The following is true

Theorem 5.5 ([21])
Let M⊂ L(H) and dimH =∞, dimM <∞. Then M is reflexive if and only if
M is hyperreflexive.

One of the tools in the proof of the above is classical Helly’s Theorem (1923).

Theorem 5.6 ([15])
Let {Xn}∞n=1 ⊂ Rd be a sequence of nonempty closed convex sets. Then

∀{nk}d+1
k=1

d+1⋂
k=1

Xnk
6= ∅ =⇒

∞⋂
n=1

Xn 6= ∅.

Another interesting question concerning the theorem above is whether the
κM depends on the dimension of M. The example bellow shows that even for
a subspace of dimension 2 in a three dimensional Hilbert space the constant κM
can be arbitrary large.

Example 5.7
Let ε > 0 and A1,ε =

[
1 0
0 1

]
⊕ [ε], A2,ε =

[
0 0
1 0

]
⊕ [0]. LetMε = span {A1 ε, A2 ε}.

Then dimMε = 2. It can be shown, thatMε is reflexive, and hence hyperreflexive,
but κMε

> 2
ε .

This gives a possibility to construct an example of a reflexive, but not hyperrefle-
xive subspace.
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Example 5.8 ([21])
LetMε be as in Example 5.7. ConsiderM =M1⊕M 1

2
⊕M 1

3
⊕ · · · . Then it can

be shown thatM is reflexive, but not hyperreflexive.

Davidson showed hyperreflexivity of the unilateral shift S.

Theorem 5.9 ([11])
Let S ∈ L(l2+) be the unilateral shift. Then W(S) is hyperreflexive and κW(S) <
18. (It was shown in [17] that κW(S) < 13.)

Now we can ask about hyperreflexivity of operators appearing in Theorem 4.13.

Theorem 5.10 ([22])
Let

T =
[

0 0
1 0

]
⊕

 0 0 0
1 0 0
0 1 0

⊕


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⊕ . . . .
Then T is hyperreflexive and κW(T ) < 11.
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