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The effect of points fattening on the blow up of
the projective plane at one point

Abstract. In this paper we study the points fattening effect over the complex
numbers for the surface arising by blowing-up of P2 at one point. We denote
this space by S1. This surface has been recently considered with respect to
the points fattening, but as a Hirzebruch surface. We study this issue for
S1 taken as del Pezzo surface. The choice of point of view for this space
implies the choice of reference line bundle. We will show, among others, that
the choice of the polarization is a fundamental factor affecting the shape of
the initial sequence.

1. Introduction

The approach to fat point schemes has been initiated by Bocci and Chiantini
in [3]. They, as the first, defined the initial degree α(I) of a homogeneous ideal
I ⊂ C[Pn] as the least degree t such that the homogeneous component It in degree
t is non zero. The definition of the initial degree can be extended for any integer
m, where vanishing along mZ means passing through points of Z with multiplicity
m. This notion was first introduced by Chudnovsky in [5] but in another set-up and
it was not given a name. Bocci and Chiantini for the first time used this invariant
to study fat points subschemes in the projective plane. They proved, among other
things, that zero dimensional subschemes Z of P2 such that

α(2Z)− α(Z) = 1,

i.e. such that the difference of the first two elements of the initial sequence is the mi-
nimal one, namely 1 in this case, are exactly the subschemes either contained in
a single line or forming a so called star-configuration.

These considerations were extended for another types of spaces. Dumnicki,
Szemberg and Tutaj-Gasińska in [7] were studying configurations of points in P2

with
α((m+ 1)Z)− α(mZ) = 1
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for some m ≥ 2 and obtained their full characterization.
From then on the alpha problem, called so because of the notation of the ini-

tial degree, was studied for some other spaces. For example results of Bocci and
Chiantini were extended to the space P3 and in this context there was even for-
mulated a conjecture for projective spaces of arbitrary dimension (see [2]). Except
for spaces Pn recently the problem of points fattening was considered in [1] for
the space P1 × P1 and by Di Rocco, Lundman and Szemberg in [6] for Hirzebruch
surfaces. In general we define the initial degree as follows (see [6], Definition 1.1).

Definition 1.1 (Initial degree)
Let X be a smooth projective variety with an ample line bundle L on X and let Z
be a reduced subscheme of X defined by the ideal sheaf IZ ⊂ OZ . For a positive
integer m the initial degree (with respect to L) of the subscheme mZ is the integer

α(mZ) := min
{
d : H0(X, dL⊗ I(m)

Z ) 6= 0
}
.

The initial sequence (with respect to L) of a subscheme Z is the sequence

α(Z), α(2Z), α(3Z), . . .

The initial sequence is a subadditive and weakly growing sequence of positive
integers, so in particular we may consider its asymptotic invariant, namely Wald-
schmidt constant (see [9] and [4], Lemma 2.3.1).

Definition 1.2 (Waldschmidt constant of a subscheme)
Keeping the notation from Definition 1.1 we define the Waldschmidt constant of
Z (with respect to L) as the limit

α̂(Z) := lim
m→∞

α(mZ)
m

.

The choice of line bundle L strictly depends on the considered varietyX. The in-
teresting phenomenon is fact, that the surface arising by blowing-up of P2 at one
point can be considered from two distinct points of view, as a Hirzebruch surface
and as a del Pezzo surface. The most natural choices of the reference line bundle
in these two cases are different. Di Rocco, Lundman, and Szemberg proved in
[6], that on the Hirzebruch surface S1 (denoted there by F1) with the line bundle
2H −E1 (the optimal bundle for this Hirzebruch surface) there does not exist any
finite set Z, such that

α(Z) = α(2Z) = α(3Z) = α(4Z)

(see [6], Proposition 4.1). In this paper we consider the surface S1 from point of
view of the del Pezzo surfaces and we prove, that the choice of the polarization is
a fundamental factor affecting the shape of the initial sequence.

The main results of this paper are full characterizations of sets Z ⊂ S1 satis-
fying the condition

α(mZ) = . . . = α((m+ t)Z)
with t = 4 and t = 3. These characterizations are given in Theorems 3.1 and 3.5. In
Theorem 3.9 we also made description of this type for sets satisfying the weaker
condition, namely α(Z) = α(2Z) = α(3Z). Let then pass to the details.
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2. Blow-up of P2 at one point as a del Pezzo surface

In fact over the complex numbers, there are exactly 10 families of del Pezzo
surfaces, including 8 arising by blowing up P2. They are blow ups in 1 ≤ r ≤ 8
generic points, denoted by us as Sr. Let us denote by fr : Sr → P2 these blow
ups and by P1, . . . , Pr the points blown up. The E1, . . . , Er are the exceptional
divisors over these points. In our case r is fixed, i.e. r = 1 then we write simply f
instead of f1. As the reference ample line bundle on del Pezzo surfaces Sr we take
the anticanonical bundle

Lr = −KSr = 3H − E1 − . . .− Er,

which is not divisible in the Picard group Pic(Sr). This seems to be the most
natural choice in this case. Thus for surface S1 we work with the bundle 3H −E1.

To understand some of our considerations better, we present a few schematic
pictures illustrating the behaviour of some plane curves after blowing up the plane
in a fixed point. It is a little bit complicated to make exact graphic presentation
of a total transform of any curve (especially that we work over C). It is so even in
the case of the blowing up of a single point. For a greater number of points such
an exact and detailed picture may not be possible to make or it would be confusing
and not transparent. For that reason our pictures are simplified. In Figures 1 and
2 we present an example of such a simplified schematic picture compared to a de-
tailed graphic presentation of the total transform of a line in the blow up at one
point.

Figure 1: Detailed picture Figure 2: Schematic picture

In further considerations we will use the following observation about blow ups.

Remark 2.1
If F is a plane curve of degree 3k in P2 passing through the points P1, . . . , Pr, so
that multPi

(F ) = mi ≥ k for i ∈ {1, . . . , r}, then Ei is a (mi−k)−tuple component
of the divisor f∗(F )− kE1 − . . .− kEr in the system |3kH − kE1 − . . .− kEr| on
Sr.
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Definition 2.2 (Adapted transform)
We keep the notation from Remark 2.1. The divisor

f∗aF := f∗r (F )− kE1 − . . .− kEr = F̃ +
∑r

i=1
(mi − k)Ei

is called the adapted transform of F .

Lemma 2.3
Let D ∈ |k(3H − E1 − · · · − Er)| for fixed 1 ≤ r ≤ 8 and Q ∈ Sr. Then

multQ(D) ≤ 2 ·multfr(Q)(fr(D))− k, (2.1)

if Q ∈ E1 ∪ . . . ∪ Er and

multQ(D) = multfr(Q)(fr(D)) ≤ 3k, (2.2)

if Q /∈ E1∪ . . .∪Er. Furthermore, if equality holds in (2.2), then fr(D) is a union
of lines through fr(Q).

Proof. LetD ∈ |k(3H−E1−· · ·−Er)| andQ ∈ Sr. Then deg(fr(D)) = 3k. Let
us denote by m = multQ(D).

First we consider the situation, when Q /∈ E1 ∪ . . .∪Er. Since fr is an isomor-
phism away of points {P1, . . . , Pr}, then multfr(Q)(fr(D)) = m. The multiplicity
of the singular point of the plane curve can be at most the degree of this curve,
thus fr(D) may have at most 3k−tuple points, what finishes the proof of statement
(2.2).

We assume now, that Q ∈ Ei for some i ∈ {1, . . . , r}. Let us denote by
F = fr(D). Then

multQ(D) = multPi(F )− k + multQ(F̃ ).

But multQ(F̃ ) ≤ multPi
(F ), thus we finally obtain the statement (2.1). �

3. The points fattening effect on S1

In this section we present some results concerning the points fattening effect
on S1 taken as a del Pezzo surface. Let us recall, that S1 arises as the blow-up of
the projective plane in a fixed point. To keep the notation consistent we denote
this point by P1 and by E1 we denote the exceptional divisor of this blow-up. Basic
questions when studying the problem of points fattening on an arbitrary variety
are: What is the minimal growth of the initial sequence and how can the sets on
which this minimal growth happens be characterized geometrically. By the mi-
nimal growth (or minimal jump) we understand the minimal difference between
the consecutive numbers of the initial sequence. For the surface S1 this minimal
growth is 0 and moreover there is possible to get more than one zero jump. We
begin with the characterization of sets with the maximal number of such zero
jumps, namely 5.
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Theorem 3.1
Let Z ⊂ S1 be a finite set of points. Then the following conditions are equivalent

i) Z = {Q} ⊂ E1,

ii) α(Z) = α(2Z) = α(3Z) = α(4Z) = α(5Z) = 1.

Proof. The implication from i) to ii) is obvious. It is enough to consider
the nonreduced curve F = 3L ⊂ P2 for some line passing through the point
P1. Indeed, it gives rise to

f∗aF = f∗F − E1 = 3L̃+ 2E1

in S1, which vanishes to order 5 along Q ∈ L̃ ∩ E1.
In order to prove the reverse implication let Z = {Q1, . . . , Qs} and we assume

thatD ∈ |3H−E1| is a divisor satisfying multQi(D) ≥ 5 for all pointsQi ∈ Z. First
we will prove that Z ⊂ E1. Suppose to the contrary, that there exists Q ∈ Z
such that Q ∈ S1 \ E1 and multQ(D) ≥ 5. Let F = f(D). Then deg(F ) = 3,
but multf(Q)(F ) ≥ 5. We obtained a cubic curve with a quintuple point, what
contradicts with the statement (2) of Lemma 2.3 with k = 1. That means Z ⊂ E1.

Now let us consider possible types of cubic curves in the projective plane and
their adapted transforms. The curve F has to pass through the point P1 (because
F = f(D)) and it should have the highest possible multiplicity in this point (in
order to get the highest possible multiplicities along the exceptional divisor E1). We
have the following types of cubic curves on P2:

a) irreducible cubic (possibly singular), or

b) a union of an irreducible conic and a line, or

c) a union of three lines (possibly not distinct).

In case a) the divisor f∗aF on S1 has points of multiplicity at most two. In case b)
the highest possible multiplicity of a point on E1 is three, this happens in the case
when the line is tangent to the conic at point P1.

Let us pass to the case c). To get possibly high multiplicities of points on
E1 there is only one condition to satisfy for three component lines: they have
to pass through the point P1 as many times as possible, but at least once. This
forces specific arrangements of these lines. We know, that the adapted transform
of a curve F consisting of some triple line L has quintuple point. Except for this
one arrangement we may consider two more situations when P1 has the maximal
multiplicity (namely 3), i.e. three distinct lines or one single and one double line
passing through P1, but any of them give the quintuple points (see at the dis-
tinguished points Qi ∈ E1 in the Figures 5, 6 and 7).

�

Remark 3.2
In fact there does not exist any other set beside of sets from Theorem 3.1 satisfying
the condition

α(mZ) = α((m+ 1)Z) = α((m+ 2)Z) = α((m+ 3)Z).
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for some m ≥ 1 on S1. Moreover for any integer m we have

α(mZ) < α((m+ 5)Z).

(see details in [8], Chapter 6).

The estimation given in Remark 3.2 let us to establish explicit formula for
the initial sequence in this case and find its Waldschmidt constant.

Lemma 3.3
If Z = {Q} and Q ∈ E1, then α(mZ) = dm

5 e and α̂(Z) = 1
5 .

Proof. Let us first notice, that the divisor F = 3kL for the line L passing
through the P1 and corresponding to the point Q ∈ E1, gives rise to D = 3kL̃ +
2kE1 ∈ |3kH − kE1| on the blow up S1 and multQ(D) = 5k for any Q ∈ Z. Hence
α(5kZ) ≤ k for any positive integer k.

For k = 1 we then obtain α(5Z) ≤ 1, what means that

α(Z) = . . . = α(5Z) = 1.

Moreover from Remark 3.2 we conclude

α(6Z) ≥ 2. (3.1)

On the other hand for k = 2 we have

α(10Z) ≤ 2. (3.2)

From (3.1) and (3.2) we then obtain α(6Z) = . . . = α(10Z) = 2.
Using the same argumentation for the next k we finally conclude, that the ini-

tial sequence in this case is α(mZ) = dm
5 e. We pass to the proof of the second

statement.
Let us notice, that we have the following obvious sequence of inequalities

m

5 ≤
⌈m

5

⌉
≤ m

5 + 1.

Dividing all terms by m we obtain

1
5 ≤

dm
5 e
m
≤ m+ 5

5m .

Obviously limm→∞
m+5
5m = 1

5 , what implies

α̂(Z) = lim
m→∞

dm
5 e
m

= 1
5 .

�

The consequence of Lemma 3.3 and Remark 3.2 is the following result.
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Corollary 3.4
Let α(mZ) be an initial sequence for some finite set Z ⊂ S1. Then α̂(Z) ≥ 1

5 .

Proof. The idea is to compare the sequence α(mZ) with the sequence am =
dm

5 e. To this end observe that

α(mZ) ≥ am (3.3)

for any integer m. Then also

α(mZ)
m

≥ am

m
≥ 1

5
for any integer m. �

On S1, there also exist infinitely many sets satisfying the weaker condition,
namely

α(mZ) = . . . = α((m+ 3)Z),

and these sets are not necessarily the same as in Theorem 3.1. Let us recall, that
in the case of the line bundle 2H − E1 for S1 taken as a Hirzebruch surface this
condition also would be never fulfilled.

Theorem 3.5
Let Z ⊂ S1 be a finite set of points and let m be a positive integer. Then the fol-
lowing conditions are equivalent

i) α(mZ) = . . . = α((m+ 3)Z)

ii) Z = {Q} ⊂ E1 or Z = {Q1, Q2} ⊂ E1, where Q1 6= Q2.

Proof. The sets in ii) satisfy the condition

α(mZ) = . . . = α((m+ 3)Z),

for example with m = 1 and m = 4 respectively. We will prove the opposite
implication.

Firstly, by Lemma 2.3 we conclude, that Z ⊂ E1. Suppose now, that Z =
{Q1, . . . , Qt} is a set such that α(mZ) = . . . = α((m+ 3)Z) = k for some integers
k and t and let D ∈ |3kH − kE1| be a divisor such that multQi

(D) ≥ m + 3 for
any point Qi ∈ Z. Let us denote by F = f(D), with deg(F ) = 3k.

We have the following estimates. Since F is of degree 3k, its multiplicity at P1
is at most 3k. Hence the multiplicity of E1 in D is at most 2k. This contributes
to the multiplicity of D at every point Q1, . . . , Qt. The remaining multiplicity
at these points must come from branches of F passing through P1 at directions
corresponding to Q1, . . . , Qt. We have

t(m+ 3) ≤
t∑

i+1
multQi

D ≤ 3k + 2kt. (3.4)

On the other hand, since α(mZ) = k, it must be
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3(k − 1) + 2(k − 1)t < t ·m, (3.5)

since otherwise one could find 3(k − 1) lines through P1, which pull-back to S1
would show α(mZ) ≤ k − 1 contradicting the assumption. Combining (3.4) and
(3.5) we get

3k − 3 + 2kt− 2t+ 3t < 3k + 2kt

and thus t < 3.
�

Remark 3.6
In the case of set Z = {Q} ⊂ E1 in fact we have even stronger condition, than i)
(compare to Theorem 3.1).

Remark 3.7
The smallest integer m, where

α(mZ) = . . . = α((m+ 3)Z)

holds in Theorem 3.5 is 1, if Z = {Q} and 4, when Z = {Q1, Q2}.

In Figure 3 we present the set Z = {Q1, Q2} described in the previous theorem
with the curve giving the beginning values of the initial sequence, i.e.

α(Z) = α(2Z) = α(3Z) = 1

and
α(4Z) = α(5Z) = α(6Z) = α(7Z) = 2.

Figure 3: Two distinct points on E1

To see the multiplicity 5 at the Z = {Q} ⊂ E1, look at Figure 6 (more precisely,
at the distinguished point Q).
Generally we can prove the following property (see more in [8], Chapter 2 and 6).
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Lemma 3.8
If Z ⊂ S1 satisfies the condition

α(mZ) = . . . = α((m+ t)Z)

for some positive integers m and t ≥ 3, then Z ⊂ E1.

Proof. It is immediate from Lemma 2.3. �

We may also consider the sets with three initial values equal 1. All such possi-
bilities are described in the following theorem. The proof is analogous to the proof
of Theorem 3.1 and it is based on the review of well known types of the plane
cubic curves (it was just listed in the proof of Theorem 3.1). We then omit details
this time and present only the statement of theorem.

Theorem 3.9
A set Z ⊂ S1 satisfies the condition

α(Z) = α(2Z) = α(3Z) = 1,

if and only if Z is one of the following sets:

a) Z = {Q},

b) Z ⊂ {Q1, Q2, Q3} ⊂ E1,

c) Z ⊂ L̃, where L is an arbitrary line passing through the point P1,

d) Z ⊂ {Q1, Q2}, where Q1 is an arbitrary point on E1 and Q2 is an arbitrary
point outside of E1.

We present all of these sets with curves realising the condition

α(Z) = α(2Z) = α(3Z) = 1

in Figures 4, 5, 6 and 7.

Figure 4: One triple point Figure 5: Z ⊂ E1
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Figure 6: Collinear points Figure 7: The "mixed" set

It is worth to mention here, that although in the Figure 4 we present point
Q /∈ E1, the case a) of Theorem 3.9 includes also the situation, whereQ ∈ E1. From
Theorem 3.1 we know, that if Q ∈ E1 the equality α(3Z) = 1 also holds. Of course,
three 0−jumps may appear later, not necessary on the beginning of the initial
sequence. It is illustrated in the following example.

Example 3.10
If Z = {Q1, Q2} and Z ∩ E1 = ∅, then α(Z) = α(2Z) = 1 and α(3Z) = α(4Z) =
α(5Z) = 2 (see Figure 8).

Although we are mainly interested to make characterization of sets with max-
imal number of 0−jumps, sometimes we meet some sets with less number of them,
but having interesting behaviour from some points of view. We conclude with
an example of such a set.

Example 3.11
Let Z = {Q1, Q2, R1, R2}, where f(R1) and f(R2) are arbitrary points distinct
of P1 and Q1, Q2 ∈ E1 and moreover Qi lies on the proper transform of the line
joining f(Ri) with P1 for i ∈ {1, 2} (see Figure 9).

Although the constant initial sequence here is short (only two numbers equal
1, instead of possible five) this example is very interesting because of symmetry
between the points. Let us notice, that every two of points: Q1 and Q2, R1 and
R2, Q1 and R1, Q2 and R2 always lie on a common line, being a component of
a divisor realising the equality

α(Z) = α(2Z) = 1.

Moreover points Qi and Ri are strongly related for fixed i ∈ {1, 2}. Since the
point f(Ri) determines the direction of a line passing through P1, then in fact it
determines the position of the point Qi on E1.
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Figure 8: Example 3.10 Figure 9: Example 3.11

Much more interesting results concerning the points fattening effect on S1 and
also on the remaining del Pezzo surfaces Sr reader can find in [8].
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