Lemat Dedekinda-Mertensa
Abstrakt
The Dedekind-Mertens' Lemma
On the occasion of 175^{th} anniversary of the birthday of Franciszek Mertens, in the article one of his result from algebra is recalled, namely that presently known as the Dedekind-Mertens Lemma. The E. Artin proof of its classical version is presented as well as some recent generalizations and applications.
*Jest to nieco rozszerzona wersja referatu wygłoszonego przez autora na X. Ogólnopolskim Sympozjum Kół Naukowych ,,Odkryj piękno matematyki'' w dniu 20 marca 2015 r..
Bibliografia
K. Ciesielski, A. Pelczar, Z. Pogoda, "Franciszek Mertens (1840-1927)", [w:] "Uniwersytet Jagielloński - Złota Księga Wydziału Matematyki i Fizyki", Wyd. Naukowe DWN, Kraków, 2000.
N. Epstein, J. Shapiro, "A Dedekind-Mertens theorem for power series rings", arXiv: 1402.1100v2[math.AC].
R. Fricke, E. Noether, R. Dedekind, O. Ore, "Uber einen arithmetischen Satz von Gauss" [w:] "Gesammelte mathematische Werke", MR 237282, JFM 24.0172.01.
R. Gilmer, A. Grams, T. Parker, "Zero divisors in power series rings", Jour. reine angew. Math. 278/79 (1975), 145-161, MR 0387274, Zbl 0309.13009.
S. Glaz, W. Vasconcelos, "The content of Gaussian polynomials", J. Algebra 202 (1998), 1-9, MR 1614237, Zbl 0923.13007.
W. Heinzer, C. Huneke, "Gaussian polynomials and content ideals", Proc. Amer. Math. Soc. 125 (1997), 739-745, MR 1401742, Zbl 0860.13005.
W. Heinzer, C. Huneke, "The Dedekind-Mertens Lemma and the contents of polynomials", Proc. Amer. Math. Soc. 126 (1998), 1305-1309, MR 1425124, Zbl 0903.13001.
C. Huneke, I. Swanson, "Integral Closure of Ideals, Rings, and Modules", Cambridge Univ. Press, Cambridge, 2006, MR 2266432, Zbl 1117.13001.
W. Krull, "Idealtheorie", Zweite, ergänzte Auflage. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 46, Springer-Verlag, Berlin-New York, 1968 (German). MR 0229623, Zbl 0155.36401.
F. Mertens, "Uber einen algebraischen Satz", S. B. Akad. Wiss. Wien, Math.-nautw. Kl.., Abt. IIa 101 (1892), 1560-1566, JFM 24.0085.05.
D. G. Northcott, "A generalization of a theorem on the content of polynomials", Proc. Cambridge Philos. Soc. 55 (1959), 282-288, MR 0110732, Zbl 0103.27102.
Refbacks
- There are currently no refbacks.
Ta praca dostępna jest na licencji Creative Commons Attribution 3.0 License.